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On the Stationary Measures of Anharmonic Systems 
in the Presence of a Small Thermal Noise 
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We consider certain small stochastic perturbations of a d-dimensional infinite 
system of coupled anharmonic oscillators. The evolution law is reversible in the 
Yaglom sense, thus Gibbs states with the given interaction and temperature are 
stationary measures. If d< 3 then some stability properties of the interaction 
imply the converse statement; if d> 2 then the same is proven for transl~ttion 
invariant measures only. The methods and results of Ref. 4, 6 8 are extended to 
second-order systems of stochastic differential equations. 
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free energy; relative entropy; singular integrals. 

1. I N T R O D U C T I O N  

One of the mos t  fundamenta l  p rob l ems  of s ta t is t ical  mechanics  is cer ta inly  
the descr ip t ion  of the set of s t a t i ona ry  states of the H a m i l t o n i a n  dynamics  
of infinite classical systems. I t  is well k n o w n  tha t  every Gibbs  state with the 
given in te rac t ion  is in fact a s t a t iona ry  measure ,  but  the converse  s ta tement  
is somewha t  p rob lemat ic .  There  exist some exact ly  solvable  models  as the 
free dynamics  and  the h a r m o n i c  crystal ,  where the presence of  some 
add i t iona l  conserva t ion  laws gives rise to some new s t a t iona ry  states (see 
Ref. 13). The  ma in  pu rpose  of this p a p e r  is to demons t r a t e  that  in the 
presence of cer ta in  a rb i t r a r i ly  small  s tochas t ic  pe r tu rba t i ons  such a 
degenera t ion  of the set of s t a t i ona ry  states is no t  poss ible  any more.  Of  
course,  we are not  able  to discuss this ques t ion  in a full general i ty;  we 
invest igate la t t ice models  with the s implest  but  mos t  na tu ra l  k ind  of 
s tochast ic  per turba t ions .  
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Let us consider a countable set S of one-dimensional oscillators of unit 
mass. Configurations of the system are represented as (o=(pk ,  qk)k~s, 
where p~ ~ N and qk e N denote the velocity and the position of oscillator 
k e S. We are assuming that S is a connected graph, the set of neighbors of 
site k e S will be denoted by Sk; i.e., j e S k and k e Sj are equivalent. 
Neighboring oscillators are interacting by a symmetric pair potential U, the 
system is stabilized by an external field, h, and each oscillator is connected 
to a thermal reservoir of temperature T > 0  and damping 2 > 0 ;  i.e., the 
evolution law is given by the system of stochastic differential equations 

dpk = --h'(qk) dt - ~ U'(qk -- qj) d t -  2pk dt + x/Z2T dwk 
j~sk  

dqk=pk dt, k s S  (1) 

where wk, k e S is a family of independent, standard Wiener processes, h' 
and U' denote the derivatives of h and U. Infinite systems of this kind are 
discussed in Ref. 2, 3, 15. The problem of existence and uniqueness of 
solutions to (1) can be solved essentially in the same way as for 
Hamiltonian systems. (2) We are not going to prove the best existence 
theorem, our conditions are subordinated to the problem of stationary 
measures. Under some natural conditions on h and U, (1) defines a 
Markov process, P '  in a space #2 c (N2)s of allowed configurations to be 
specified later. This configuration space is so large that #(f2)= 1 for a wide 
class of probability measures including the Gibbs states for the given 
interaction. Introduce 

Hk(o)  = ' 2 7Pk + h(qk) + ~ U(qk-- qj) (2) 
j~ Sk 

the energy of the oscillator at site k ~ S, then # is a Gibbs state with poten- 
tial h and U at temperature T if the joint conditional density of Pk and qk 
given pj and qj f o r j  ~ k is proportional to exp( - lIT Hk(co)) for each k ~ S. 
The formal generator G of P '  can be written as G = n_ + 2@p, where 

l_(,O = Z [ p k V q k  (p --  (Vq,'cHk) Vpk(,O] 
kES 

(3) 

is the Liouville operator, which is conservative, and 

Gp~O= ~ (TV2kq~--pkVpk(#) (4) 
kES 

is a dissipative generator, while Vpk and Vqk denote differentiation with 
respect to Pk and qk- Let Cg denote the space of local functions 
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q):(R2)s__,R with two continuous derivatives, then ~O~0o 2 implies 
Vp~q) = Vqk~O = 0 for all but a finite number of k s S, thus G is well defined 
on C~. 

Suppose now that # is a Gibbs state for h and U with temperature 
T >  O, and observe that for cp e 0 2 we have 

~o = T ~, eI~k/r[Vq~(e- Hk/r Vp~ (p) - Vpk(e - ~Ik/r Vz k ~o) ] 
kr 

(5) 

Gp~O = T ~ em/rVpk(e-tIdrVpkq)) (6) 
kES 

thus integrating by parts we obtain for q)l, (,02 ~ 02 that 

f q) l@q)2 d~ = --I~T 2 f (Vpk~gl)(Vp k~02) d~ 
keS 

~- T 2 f [(Vpk~O1)(Vq k(~2) -- (Vqk~Ol)(VP k(p2)] d~ (7) 
kES 

provided that the expectations make sense. In contrast to the usual rever- 
sibility property 

introduced by Kolmogorov (9) and often referred to as the principle of 
microscopic balance, (7) is obviously equivalent to the reversibility 
property 

f ~p~ G~p2 @ = f q~*G~p* @ (9) 

introduced by Yaglom [16], where (p*(co) = q)(co*) and co* = ( - P k ,  q~)k~s 
if co=(Pk, q~)k~s. Notice that Hamiltonian systems satisfy (9). Putting 
(p2 = 1 we see that both (8) and (9) imply the stationary Kolmogorov 
equation 

f G~o d # = 0  for cpECo 2 (10) 

whenever the expectation makes sense. More intuitively, (9) means that the 
probability measure of the corresponding equilibrium process is symmetric 
with respect to the reflection c o ( t ) ~ c o + ( - t )  of trajectories; (8) is related 
to the symmetry co(t)--, co(-t) .  Let us remark that (1) seems to be the sire- 
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plest stochastic system of interacting components which is reversible in the 
Yaglom sense. The formal generator of a wider class of processes satisfying 
(9) decomposes as G = I_ + Gp + Gq, where 

l_q) = T ~ eHk/T[Vqk(Fke-Hk/Tvpkrp)--Vpk(Fke-Hk/TVqkq))] (11) 
k~S 

T ~ H "T 2 Gpq) =-~ ~ s  e k/ Vek(ake-Hk/rVpk(P) (12) 

T 
G q q ) = - 2  2 e t tk /TVqk(b2e-Hk/TVqk(P)  (13) 

k~S 

Fk, ak, and bk are arbitrary symmetric functions, i.e., F~' = Fk, a* = ak, and 
b* = bk. 

The idea that one can use information-theoretical methods to prove 
ergodic theorems for Markov processes goes back to R6nyi. (12) The main 
point is that the measures of information like the relative entropy with 
respect to the equilibrium state are monotonic functions of time. In the case 
of infinite systems only the local versions of such quantities make sense, 
and they are not monotonic anymore. Nevertheless, under the additional 
condition of reversibility in the Kolmogorov sense, Holley (< managed to 
control the relative entropy (i.e. the free energy) of the finite-dimensional 
distributions of stochastic Ising models in translation invariant situations; 
he proved that every translation invariant stationary measure is a Gibbs 
state for the given interaction and temperature. This method and result was 
extended to nontranslation invariant stationary measures in dimensions 
one and two by Holley and Stroock. (7) For the treatment of some con- 
tinuous spin systems (stochastic Heisenberg models) see Holley and 
StroocD s) and Fritz. (4) Here we are going to adapt this technique of free 
energy to interacting diffusions which are reversible only in the Yaglom 
sense. The basic ideas are quite easy. Since e 'a is a group, the Hamiltonian 
part of the dynamics preserves the relative entropy with respect to any 
equilibrium state, and the free energy is just a linear function of the relative 
entropy with respect to the equilibrium Gibbs state. On the other hand, the 
dissipative component, e t% is reversible in the Kolmogorov sense, but it is 
acting in the space of velocities only. Therefore we expect that the free 
energy decreases unless the state we consider has a Maxwellian distribution 
of velocities, whence the Gibbs property follows by the stationary 
Kolmogorov equation (10). This argument is trivial for finite systems, in 
the case of infinite systems we have to understand that every stationary 
measure admits smooth local densities, and some boundary effects should 
be controlled, too. Since G is a degenerated elliptic operator, the Malliavin 
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calculus of Ref. 8 does not work in our case; the regularization trick of 
Ref. 4 will be used. The crucial step of the proof is the choice of the 
singular integral defining the approximating family of local densities. As in 
Reference 4, all calculations are based on the existence of some moments. 
Under some more or less natural stability properties of the interaction we 
prove that every stationary measure satisfies the moment conditions we 
need. 

1. M A I N  RESULT 

First we summarize our conditions on S, h, and U. For  each k ~ S we 
define a sequence of boxes centered at k by A l ( k ) = { k } u S k ,  
A, (k)= u A I ( j )  for j~A~_~(k)  if n > l ,  the boundary of An(k) is then 
defined as B~(k)=An(k)\An_l(k); Bl (k)=Sk.  If 0 is a distinguished 
element of S, then Ik[ denotes the distance of k e S from 0, i.e., ]kl = min n 
such that k E Sn(O). We are assuming that 

sup card Sk < + oo (1.1) 
k e S  

card B~(m) 
lim sup 0 (1.2) 
~ co m ~ s card An(m ) 

s [cardBn(0)]  1= +oo (1.3) 
n = l  

Notice that (1.2) implies l ime - ~  card An(O) = 0 for each e > 0 as n ~ oo. If 
S=77 d, the d-dimensional integer lattice, and S~ contains the nearest 
neighbors of k, then (1.3) is possible only if d~<2. In translation invariant 
situations (1.3) is not needed. 

Our conditions on the interaction are the following. The potential 
functions h: ~ ~ [0, oo) and U: ~ ~ [0, oo) are assumed to have two con- 
tinuous derivatives, U(x)= U(-x ) ,  and we have some a > 0 and b ~> 0 such 
that xh (x) ~. -b ,  xU'(x) >1 -b ,  and 

x 2 + y2 + U,2(x _ y) <~ a[1 + 2b + xh'(x) + yh'(y)] (1.4) 

+L  u J 
~< a l l  + h(x) + h(X) + h(y) + h(35)], (1.5) 

h'(x)-h ' (X)  ]2 V ' ( x - y ) - V ' ( 2 - ~ )  

I I-;-:- J J + L l - l i Y F ? - i , -  y r J 
r 1 

~< a[1 + 4b + xh'(x) + yh'(y) + Sh'(X) + )7h'(37)] (1.6) 
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These conditions are automatically fulfilled if h" and U" are bounded, and 
liminfh"(x)>O as x ~  + ~ .  Notice that both h"(x) and U'(x) are 
necessarily bounded by a quadratic function of x. 

We shall show that (1) defines a Markov process W in the con- 
figuration space f2 defined as 

~ ~__ [(2)~ (~2)S: sup l+h(qk)+p~ ] k~S l + [ k ]  ~ < +oo forsome o-<4 (1.7) 

Equip s with the product topology and the associated Borel field, and let 
2 2 Cob c C o denote the space of bounded cylinder functions with continuous 

and bounded first and second derivatives. If q~: f2 ~ ~ is measurable and 
bounded, then Wcp = Ptq~(z) denotes the conditional expectation of ~0(co(t)) 
given o~(0)=z, where og(t) is the process defined by (1) in a sense to be 
specified in the next section. The minimal requirement concerning W is that 
~, the space of bounded measurable functions qg: f2 ~ ~ is mapped into 
itself by W. There are several methods to construct solutions to (1). Here 
we follow Ref. 2, 3 and prove 

Theorem 1. Suppose (1.1), 1.2) and (1.4), (1.5), then there exists a 
transition semigroup pt: B ~ B such that for ~p e C~b we have 

Pt~o=~0+ WG~ods II 

The conditions of this theorem are far from being optimal; as a matter 
of fact, a hierarchy of existence theorems can be imagined. If (t.4) and (1.5) 
are weakened, then f2, the space of allowed configurations, gets smaller (see 
Ref. 2). On the other hand, assuming that h" and U" are bounded, we can 
allow initial configurations with an exponential growth rate (cf. Ref. 3). 
The reason for presenting Theorem 1 is economy of the paper. To prove 
that every stationary measure satisfies certain moment conditions, we need 
an a priori bound, and this a priori bound yields Theorem 1 at the same 
time. Although we have a uniqueness result for strong solutions to (1), we 
do not know that the Markov process of Theorem 1 is uniquely deter- 
mined by the Kolmogorov equation given there. Of course, this equation 
makes sense only if p t satisfies some moment conditions. Therefore on the 
Markov process defined by (1) we always mean the process to be construc- 
ted in Section 2, where the moment conditions mentioned above are 
verified, too. Let us emphasize, however, that this preferred process is not 
arbitrary; it will be constructed as the limit of the associated finite-dimen- 
sional processes. 
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'Theorem 2. Let 2 > 0 ,  T > 0  and suppose (1.1)-(1.6), then every 
stationary measure of P '  is a Gibbs state for U and h at temperature T. | 

This result can be formulated without any reference to the dynamics. 
One can replace the condition of stationarity by its consequence (10) for 
r ~ Czb, provided that all coefficients of {3 have finite expectations. The 
structure of the proof can be outlined as follows. Introduce 

z.(c~) =e xp  ( -  1T~~ ~ [~ p~+ h(qk)+I_2j~S~A. U(qk--qj)]) (1.8) 

where An = A~(O), and for any probability measure # on g2 let 

where 

un(co) = f g,,(co, (5) #(dd9) 

g(p, q) =- ca(1 + (~p2 _~. aq2)-9, f fg(p,q)dpdq= 1 

(1.9) 

and 

gn( c~ (5) = l-[ g(Pk -- ilk, qk -- (tk) 
kcAn 

/~k and qk denote the coordinates of c5 ~ s i.e., e3 = (ilk, ~tk)kES. Since g,  is 
a singular integral as a-- ,  + oe 

u~(o))  _ u . (~o)  Z= f un( l log-g  do = ff gn(go, ~o) log z - ~  dn~o /~(ddJ) (1.10) 

approximates the free energy of/~ in An; here and later the abbreviation 

d~o)= I-I dpk dqk 
k~An 

is used. Suppose now that # = #t evolves with time according to (1), then 
dun/dr= ~ C~g,(co, cb)#,(d69), where the bar indicates that the generator is 
acting on gn as a function of o3, thus 

din CC log u.(~o) Gg.(~o, oh) #,(do3) d~o 
d-7-- JJ (1.1l) 

provided that the expectation makes sense. Integrating by parts we obtain 

d/n 
d--7 = - ,~r  ~ F~(n) + T 2 G~(n) + R(n, ~) 

kEAn k~Bn 

(1.12) 
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where Bn=B,,(O) is the boundary of An, lim R(n, t r ) = 0  as a ~  +0% and 
the dominant terms read as 

Fk(n) = I un(co) [ Vpk l~ un(co )12 j (1.13) 

Therefore, if # is a stationary measure, then we expect that Fk(n)~ 0 as 
a ~  +oe, i.e., /~ has Maxwellian velocities of temperature T, whence the 
Gibbs property of # follows by an additional, but easy calculation via (10). 
In order to let this argument work on a rigorous level, we assume first that 

f[p~ + qkh (qk)] #(de)) < +oe (1.14) sup 2 , 
k e S  

then (10) makes sense for all (p e C2b, thus we have 

u.(co) 
f f  f (z--(-~) Ggn(co, d)) #(dCo) d,,co = 0  (1.15) 

whenever f :  N ~ N is bounded. Now, following Ref. 4, we can integrate by 
parts, and letting f g o  to log x we conclude that lim Fk(n)= 0 as a ~ +0% 
which implies the statement. Finally, exploiting (1.4) we show that every 
stationary measure satisfies both (1.14) and (1.15), which will complete the 
proof. 

Just as in the case of stochastic Ising models (see Ref. 7) (1.3) can be 
relaxed in translation invariant situations only. 

T h e o r e m  3. Let 2 > 0 ,  T > 0 ,  suppose (1.1), (1.2), (1.4), (1.5), (1.6), 
and let S be a group with neutral element 0 such that Sk = kSo for each 
k ~ S. If p is a stationary measure of P', and/~ is invariant under all trans- 
lations T m, m e S defined as Tmco = (Pmk, qmk)~ ~ S if CO = (Pk, q~)k~ S, then # 
is a Gibbs state for U and h with temperature T. | 

Since (1.1), (1.2), (1.4), and (1.5) are conditions of all three theorems, 
their validity will always be assumed in the forthcoming proofs. 

2. C O N S T R U C T I O N  OF THE S T O C H A S T I C  D Y N A M I C S  

In this section we derive some a priori bounds implying the existence 
of the Markov process we are going to investigate later. The very same 
technique yields (1.14) for arbitrary stationary measures of pt. These 
calculations are based on the following couple of Liapunov functions (cf. 
Ref. 3, 4). For  m e S, co e g2 and 3 > 0 let 
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k~S jeSk 

+ e p q,+sq 
ken 

W~(co)= ~ e - & a ' ~ [ 1  +b+p~+qkh'(qk)] 
keS 

(2.1) 

(2.2) 

where p(k, m) denotes the distance of k and m in S, i.e., p(k, m) = min n 
with k eAr(m). In view of (1.4), U(x-y) is bounded by a linear function 
of h(x) and h(y), thus both Qm and W,, are well defined on t? for each 

> O. Moreover, e~ e g2 if, and only if 

Qm(CO ) 
sup < +a )  for some a < 4  (2.3) 
~ s  1 + Iml ~ 

Indeed, if (o ~ ~ then we have some C > 0 and a < 4 such that 

Qm(co)<C ~ e-~'(k'ml(1 + Ikl ~) 
keS 

~< 2~C(1. + Iml r ~ (1 + y(k, m)) e- @(k,,.) 
kaS 

whence (2.3) follows by (1.2); the converse statement is trivial. 

L e m m a  1. We have a universal constant K such that 

2 
GQm{cn)E[~SK(l + Z)e --~l W~(co)+ 2(T+ K)k~se 6p(k,m) 

for all ~oel2, m a S ,  and 6 > 0 .  | 

Proos If a)~t2 then the terms of @Qm can be rearranged, and a 
direct calculation yields 

2 
5Qm =2 ~ e-6~ p~-q~h'(qk)) 

keg 

-}- i L ~aS [e--aPtJ'm)--~-~P(k'm)](Pk Jr- ~I)/) U'(qk--qj  ) 
J k 

52 + 4~s  ~ [qje-~PO")--qke-~~ U'(qk--qj) 
je& 

822[44/1-2-3 
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Observe now that 

le --6p(j,m) - -  e--a(k,m) I ~ (~ and e --3p(j.m) ~ eae-ap(k ,m)  

i f j  e Sk, while 

2qje -~P(J"~) -- 2qke--cSp(k,m) = (qj + qk)[e 6p(j,m) _ _  e -6p(k,m)] 

+ (qj-- qk)[e 60(j. m) + e-6P(k,m)] 

thus comparing 

2 U ' ( q k - - q j ) ( P k + p i + ~ q k + ~ q j )  ~ < ( l + 2 )  U'2(qk--qi)  
I 

2 2 2 2 *~ 

+ p +p; +2q +sq  

and - ( q k -  q j ) U ' ( q k -  qi)<~ b, we obtain the statement as a direct con- 
sequence of (1.4). 

Our  a priori bound for the construction of solutions is the following 
consequence of Lemma 1. 

k e m m a  2. Suppose that S is a finite set, and ~ > 0 is small enough, 
then for each strong solution co = co(t) to (1) we have a family Rm, m ~ S of 
random variables such that P[Rm > c + u] <. e -u and 

sup Qm(co(s)) <. [1 + Qm(co(O)) q- Rm] e a 
s ~ t  

for all t > 0 and m > 0, where the constant c does  not depend on S, co, 
and m. | 

Proof. The stochastic differential of Qm(co(t)) reads as 

dQm= GQm dt+ ~ rk dWk 
k e S  

where 

Therefore, if 22K(1 + 2) e ~ ~< 2, then Lemma 1 implies 

de c'(1 + Qm) = -ce-C~( 1 + Qm) dt + e ~ dQm 

1 ~ 2et..2 .I~ ~ )~( T + K) e -a  ~ e-6p(k'm) dt + ~e ,/cut 
k ~ S  

"}- E ( e - a r k  dWk - -  ~el -2ctrk2 ~ttj'd'\ 
k E S  

(2.4) 
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Introduce now 

R m = c q- sup (e -ark  dw~ - ~el -2ctt. k2 ds )  
t > o  

and notice that (1.2) implies ~ e  6P(~'"~)~<Cl, while (1.4) yields 
rk2 << c2 + c3 Q m ,  which implies the inequality of Lemma 2; the bound on 

the tail of Rm is just the favorite maximal inequality of Ref. 11. 
Now we are in a position to construct solutions to the infinite system 

(1). 

P r o p o s i t i o n  1. In the special case of S-=A,(O) we denote by 
co("/=co(")(t,z) the strong solution to (1) with initial condition 
co(")(0, z ) =  z e Q. Then the limiting process co = co(t, z) exists in the sense 
that 

P[  lira sup (Ip(k")(s, z) - Pk(S, z)p + Iq(k~)(s, z) - q~(s, z)l) = 0] = 1 
n ~  s ~ l  

for all t > 0 ,  k 6 S  and z~s where co(")= (p~"), q~"))k~A.(O). This limiting 
solution is actually a strong solution to (1) satisfying the initial condition 
co(0, z ) =  z as well as the conclusion of Lemma 2, and there is no other 
solution with these two properties. | 

P]'ooL Introduce 

and 

d(~)( t)  = m a x  e -xs  Ip~ + ~)(s, z) - p ( f f ) ( s ,  z)l 
s%t 

D~)(t, r )=  max d~")(t) 
k~ Ar(m) 

Let k ~ A , _  1(0), then (1) yields 

and 

e At ip~n+ll( t ,z)_p~,)( t ,  z)l ~< [h ' (q~+l)) -h ' (q~))[  e XSds 

+ Y I r r ' " , ( ' + l ~ - , , (  "+  v t~ /k  ~/J I ) )  - -  ~TUg~(n)t~lk - -  ~J'~(n)]lsl e - 2 S  ds 
j e  Sk ' 

e ~' qk'~("+l)(t,z)--q(k")(t,z)l<~e-;~' ip~+ 1)_ p(n)[ d s  

<. e -  ~' e ;'s d~~ ds < d~"~(s) ds 
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as 2 > 0 ,  thus compar ing  (1.5) and L e m m a  2 we obta in  that  

d(k"~(t) <~ Lea~2[1 + Qk(Z) + R ~  ) + R(k ~ + 1)] 1/2 [t (t - -  S) O(n)(S, 1) ds 
o o 

where L is a universal  constant ,  R~ ") denotes  the r a n d o m  variable 
associated with co(~) in L e m m a  2. Therefore  as z ~ f2, we have a ~r < 4 such 
that  for r < n - 2 

D(o"~(t,r)<~L~e~/Z(l+r) ~ ( t - s )  D(o")(s,r+l)ds 

where 

L,,= max  L[1  + Qm(z)+R(~+R(~+I)]I/2(1 + Iml) ,~/2 
m E A n ( O )  

and with some ~ =  g(z) we have 

P[Ln>g+u]~<2  ~ exp(-u(l +Iml ~/2) 
m ~  A n ( O )  

This inequali ty can be i terated n -  r -  2 times, and we get 

D(o")( t, r) <<. [ L,eCt/2]~ (n! )~/2 
(2n - 2r - 4)! 

Since a < 4 and  a ~> 1 m a y  be assumed,  an easy calculat ion results in 

P [  ~ d~ ' ) ( t )<  + ~ ] = 1  

for all t > 0 and  k e S, which proves  that  co(n~ ~ co as n ~ +oo.  The integral 
form of ( t )  and the est imate of  L e m m a  2 follow by a s t ra ightforward 
procedure  via L e m m a  2, while the uniqueness result can be p roven  by 
means  of the above  i terat ion me thod  with the simplification that  the num-  
ber of al lowed i terat ions is not  limited. 

Proof of Theorem 1. As a limit of solutions to finite systems, the 
general  solution, co = co(t, z) is a joint ly  measurable  function of t > 0 and 
z e (2, thus P~o is well defined and it is measurab le  for each measurab le  and 
bounded  ~o: s ~ ~. Let  G ,  and P~ denote  the formal  genera tor  and the 
semigroup associated with co~"). If ~o is a cont inuous  and bounded  cylinder 
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function, then P'n~o ~ P'cp as n ~  ~ follows from ~(') ~ co for all t > 0  and 
z ~ (2. Finally, if ~0 ~ Co2b then the Ito lemma and (2.3) yield 

pt q~ = cp + PS G ~ q~ ds 

which completes the proof by letting n go to infinity. | 

Our a priori bound for the stationary measures is based on 

k e m m a  3. Suppose that #(s = 1 and ~ G~o d# = 0 whenever G~p is 
well defined and bounded on s then/~ satisfies (1.14) | 

Proof. Observe that if e > 0 and 3 > 0 then 

Ge ~Om= --ee +QmGQm +eZe -eO" ~ r~ 
k ~ S  

is well defined and bounded on s In view of (1.2) the quantity 

M(6)=  ( T + K )  sup ~ e-aP(k'm)< + ~  
r n e S  k e S  

for each 6 > 0, thus specifying 6 as the unique solution to 4~K(1 + 2 ) e a =  2 
we obtain from Lemma 1 that 

Ge -+era >~ • 2 [ 1 W m  --  M(6)] e 'Q~ 

thus taking the expectation of both sides and dividing by e2/4 we have 

f Wm(~o) <~ 4M(6) e - eQm( ~ ),u ( d ~  ) 

which completes the proof by letting e go to zero I 

Let us emphasize that the above bound does depend on 2. 

Proposition 2. Every stationary measure of P'  satisfies (1.14). | 

Proof. An easy limiting procedure yields 

fo P'e-~Qm = e ~Qm + P~Ge-~O~ ds 

if e > 0 and 6 > 0, and both sides are uniformly bounded on s thus we can 
integrate with respect to #; the result is just j" Ge-~Om d/~ = 0, which implies 
the statement by the argument of Lemma 3. i 
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Now we are in a position to manifest the ideas outlined at the end of 
Section 1. Many technical details follow Reference 4. 

3. THE T E M P O R A L  D E R I V A T I V E  OF FREE ENERGY 

In addition to previous conditions, from now on we are assuming 
(1.6), too, while (1.4) and (1.5) are used mainly via (1.14) only. The 
notation introduced in the introduction and Section 1 will be used without 
any reference. Since g,(e), . ) e  C~b, we have S Gg,(e), 05)~(d05)=0 for each 
e) ~ f2 if # is a stationary measure of pt (cf. Theorem 1 and Propositions 1 
and 2). Consider now a twice continuously differentiable and bounded 
f :  [0, + o o ) - +  [0, + o e )  such that O<~f'(x)<~l/x, then by means of (1.14) 
we obtain 

u,,(co) 
f f  f (z--'C~) Gg,,(o), 05'#(d05) d,~o):O (3.1) 

and the Fubini theorem allows us to change the order of integration. We 
shall let f '-- .  1/x, then (3.1) will turn into (1.15). Our crucial trick is the 
following one. Since g, is a function of o) - 05, we have 

Vbk g.(o~, oh) = --Vpk g.(r c3) and Vqk gn(O.), (.7)) = - -Vqk  gn(O.), (~)) (3.2) 

thus we can replace the operators Vpk and V~k appearing in G by Vpk and 
Vqk, respectively, therefore we can integrate (3.1) by parts. The case ofp~ is 
really nice because Gp satisfies the equation of detailed balance, and 
unpleasant terms containing Vqk can be eliminated by means of the identity 

(Pk  --  i lk)  Vqk  gn(0), 05) = (qk - ~t~) Vpk g,(o), 05) (3.3) 

More exactly, the contribution of one term of Gp to the left hand side 
of (3.1) reads as 

. ( ~ , , (~ ) ' ~  

Ig n b/n :--fSf'(-~n)(Vpk-~n) [ZVpkgn%-fikgn]dnco.(dff)' 
= -TFk(n, f )  + R~k(n, a) (3.4) 

where 

Fk(n, f ) =  I f '  \ z,,(co) ] \  ,k Zn((3) ) ) z,(o)) d, co (3.5) 
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x (Pk - /Sk) g,(co, o3) d,o) #(do3) 

Indeed, putting fik = Pk + ( i lk- -  Pk), the second 
immediately. To recognize Fk, it is sufficient to notice that 

f Vpk g,(co, aS) #(doS) = Vpk u . (o )  

and 
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(3.6) 

expression, Rlk appears 

Jk(n, f ) =  f /un\VVq kun Vpkun ] 
Zn _l 

; [(Vq  t 

where 

- T  vp~zn(~~ (3.7) 
Pk = - T V p k  log z,(co) = zn(og) 

The step of integrating by parts will be justified a little bit later. The con- 
tribution of one term of N_ is 

(3.8) 

where 

ck(r~) = VqkHk(r~) = ck(co, n) + bk(o~, n) (3.9) 

bk(co, n ) =  ~. U'(qk--qj) (3.10) 
j E Sk \An  

Ok(CO, n) = -- TVqk log z,((o) = - T  Vqkz"(c~ (3.11 ) 
z.(~o) 

Using first (3.9), (3.2), (3.3) and the decompositions/3~ = p~ + (bk - P~), 
ck(~3, n) = c~(co, n) + [c~(e3, n)--  ck(co, n)], and then integrating by parts 
we obtain that 

Bk(n , f ) :  TJk(n,f)+ Gk(n,f)+Rzk(n, a)+R3k(n, a) (3.12) 
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f (x)  = fo f(Y) dy 

x bk(rS, n) g (o, d . o  

fUn(CO)\~ Un(fD)\ 
Rzk(n, a)= --If f '  

x (qk - (Tk) g.( o9, do) d.o9 #(dd)) 

Un bl n 
R3k(H' f f ) : f f  f '  ( - '~n)(Vpk~n)  [Ck(O), H) 

- Ck(CS, n)] gn(o9, ~) d, co p(dd9) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

therefore (3.1) turns into 

3 

2T ~ Fk(n,f)= ~ G~(n,f)+ ~ Y' R,k(n,a) 
k~An keBn keA n i = 1  

(3.17) 

The rigorous proof of (3.17) as well as its upper bound is given in the 
following lemma. 

k e m m a  4. We have a universal constant K such that 

K 
2T ~ Fk(n)<~K ~ [Fk(n)]'/2+ - ~ [Fk(n)] m 

kEAn k~B n ~ k~An 

for each n and o-> 0. II 

Proof. First we show that the quantities introduced above make 
sense. Equation (1.14) and the Cauchy inequality are the main tools. 
Observe that a logarithmic derivative is hidden in Fk, thus 

..]2 
(3.18) 

as O<~xf'(x)<<. 1; the condition of equality is just f ( x ) = l o g  x. Moreover, 
the concrete form of gn implies un(co)>0 for all ~o~f2, and 
[Vpkbln] ~ 9 ~ U,, thus 
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Fk(n) = V . +  u.d.~o<162a+--~fp~u.d.co 

2 fp~#(ddo) 4 162(7 +~5  +~-5 f f  (P~- ilk) 2 gn( c~ (5) d.o)#(ddo) 

4M 4ca 
~< 162a + - ~  + T2a2 (3.19) 

where M is the universal constant coming from (1.14), while 

c2 = c(p2 + qZ)( 1 + + q2)-9 dp dq 

c is the normalizing factor of gn. 
, Since f'2(un/zn) un/z.-.~ f (un/z.), the Cauchy inequality yields 

Rlk(n, (7)<.. F~/2(n, f )  I f f (Pk- ilk) 2 gn( ~ do)dncop(ddo)] u2 

2 <~ - ~ rl/Z(n, f )  (3.20) 
(7 

R2k(n, a) <<. 2 x~22 F~/2( n, f )  (3.2i) 
( 7  

follows in the same way. The case of R3k is a little bit more complicated, 
this is the point where (1.6) is needed. We have a family of random 
variables, Lk = L~(co), k e S such that 

[ck(w,n)--c~(do, n)]2<..L~(do) ~ [(qi--~]j)Z+(qj--~j) 4] (3.22) 
j C A l ( k )  

and comparing (1.6) and (1.14) we see that ~Lk((o)p(dcS)<...M for each 
k e S, provided that M is large enough. Consequently 

R3k(n,a)<~[McardAl(k)(cza-2+c4 a 3)]1/2F~/2(n,f) (3.23) 

where 
f + ~ f + ~  q2 -9 c4 = cq4(1 + -k- p2) dp dq 

- -  o ~  clo 

Finally, again by (1.4), (1.14) and by the Cauchy inequality 

Gk(n, f )  <~ F~/2(n, f ) I f  b~(~, n) #(dc3)l ~/2 

~< [M card Sk n An] 1/2 F~/2(n, f )  (3.24) 
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In view of these estimates, to complete the proof it is sufficient to show 
that the boundary terms appearing at the steps of integrating by parts 
vanish at infinity. More exactly, collecting the analogous terms together, 

and exploiting [Vpk gn[ ~ 9 ~ gn, 0 <~ f(x) <~ C and 0 <~ f(x) <~ Cx, these 
problems reduce to 

f;f ak(~~ 05) g,(co, 05) H dpj H dqj #(d05) = 0 (3.25) lira 
pk ~ +_oo k ~ j E A n  j E A n  

where a~(co, 05) = 1 + hPk] + Iqk - qkl + [bk(~O, n)l + ICk(OO, n) -- ck(05, n)l + 
leg(e), n)l, and to 

f ; f  IPkl gn(CO, 05) H dpj H dqjla(d05)=O (3.26) lim 
qk--* +o~ j E A n  k=/=jEAn 

It is plain that gn--* 0 as Pk ~ +oo. Observe that g ,  as a function of p~ 
attains its maximum at Pk =/5~, while ak does not depend on Pk, thus an 
easy calculation shows that the convergence of gn mentioned above is 
actually a dominated one, which proves (3.25); the proof of (3.26) is the 
same. 

Comparing the results of this section we obtain that 

2T ~ Fk(n,f)<~K ~ F~/2(n,f)+ K ~ F~/Z(n,f) (3.27) 
k E A n  kEBn  O" k E A n  

Since Fk(n, f)<~Fk(n), (3.27) implies Lemma 4 by letting f go to log x in 
such a way that f '(x) ~ 1/x, while 0 ~< xf'(x) ~ 1 remains in force. | 

Now we are in a position to conclude Theorems 2 and 3. 

4. EVERY S T A T I O N A R Y  M E A S U R E  IS A GIBBS STATE 

We start with an easy consequence of Lemma 4. 

Lemma 5. The conditions of Theorem 2 imply that 
lira inf~_~ +oo Fk(n) = 0 for each k ~ A,. | 

Proof. Let bn = card B,,  cn = card An, and consider 

X(n, tr)= ~ Fk(n) (4.1) 
k E B  n 

Q(n, a ) =  ~ Fk(n) (4.2) 
k E A n  

Z(n, a)=Fo(O)+ ~ X(n, or) (4.3) 
r = l  

Lemma 4 and the Cauchy inequality result in 

2TQ(n, a) <~ K x/~, X1/2( n, ~) + K x/-~, Q1/2( n, or) (4.4) 
f f  
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whence, as X(n, or) <~ Q(n, or), we obtain that 

K 2 

On the other hand, u,(co), n = 0, 1, 2 .... is a compatible family of probability 
densities, thus denoting by #o the underlying probability measure, and 
taking into account that 

F~(n)= f Fvpku"(c~ u~(oo) +~-~12#~(dc~ (4.6) 

the Jensen inequality yields 

Fk(r) <<. Fk(n) if r ~< n (4.7) 

Therefore we have 

(2T) 2 Z(n - 1, o) Z(n, ~) <~ (2T) 2 ZZ(n, o) 

<~ 2K2bn[Z(n, o') - Z(n - 1, a ) ]  + R(n, o) (4.8) 

where R(n, a ) ~ 0  for each n as a ~  + m  (see (4.5)). Suppose now that 
l i m i n f ~ + o ~ Z ( n ,  cr)~>e>0 for n~>n o , then we have ac r  0 > 1  such that 
Z(n, a) > 0 if n >/no and cr > ~o, thus (4.8) turns into 

(2T) 2 bn 1 <<.2K2[Z-~(n - 1, ~ ) -  Z - t ( n ,  a ) l  

+ R(n, o) b,  lZ-l(n - 1, ~) Z-l(n, o) (4.9) 

for n > n 0, consequently 
N 

(2T) 2 ~ b;~<~2K2[Z-~(no, a ) -  Z-~(N, a)] 
n = n 0 + l  

N 

+ ~ R(n,a) b~lZ ' (n - l ,g )  Z-~(n,a) (4.10) 
n = n 0 +  i 

Since ~ b ,1  = + ~ ,  we can choose N to be so large that the left hand side 
of (4.10) exceeds 2K2/~, but letting then ~ go to infinity a contradiction is 
obtained, i.e., lim inf~_~ +co Z(n, a)=0, whence the statement follows by 
(4.4) and (4.5). | 

The translation invariant case is somewhat simpler, but the result is 
the same. 

I . e m m a  6. Under  the conditions of Theorem 3 we have 
lira i n f ~  +~ Fk(n)= 0 for each k and n. | 



44 Fritz 

Proof. Condition (1.3) was used only at the end of the proof of 
Lemma 5, thus (4.4) and (4.5) can certainly be applied; we obtain 

(2T) 2 ~ Fk(n)<~2KZb,+2K2a-2cn (4.11) 
k ~= An 

Since # is translation invariant, we have Fk(r)<~Fj(n) whenever 
A r(jk -1) c A,. Indeed, the finite-dimensional distribution of the variables 
(Pi, q~), isA,( jk  1) is the same as that of (pi, q~), ieA, ,  thus the 
statement follows by the monotonicity property F~(r)<~F~(n), r<~n, con- 
sequently 

(2T) 2 C n _ 2 r - -  1Fk(r) <~ 2K2b~ + 2K2a 2c~ (4.12) 

whence (2T) 2 Fk(r ) ~<2K2a -2 follows by (1.2), which completes the proof 
of Lemma 6. I 

The next step is to show that our p has Maxwellian velocities of tem- 
perature T, i.e., the ratio u~(o~)/zn(~o) becomes independent of Pk as 
o" - ,  +oo. 

I.emma 7. If lira inf~ ~ +~ Fk(n) = 0 for each n, then we have 

f pkq~(co) #(d~o) = T f Vpk q~(o))#(d~o) 

for each bounded cylinder function (p such that Vpk~o is continuous and 
~o(~o) = 0 if IPkl is larger than a certain constant. | 

ProoL Since gn is a singular integral 

TfVpkcp(o~)/~(d~o) = lim 

if n is large enough, while 

T I (Vp~(p(og)) u,(o))/~(de)) 

T f  (Vpkq~(~o)) u~(co) d, co (4.13) 

= - T f  q~(og) VpkUn(CO) dno 

= f pkq)(O9) U,,(m) d,,~ 

(4.14) 
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therefore, as 

f (D((1))(Vpkl~ln'~-~-~) ~n ~[f (~2((1))#(dfJ))ll/2Flk/2(Fl) (4.15) 

the statement follows by letting a go to infinity along a sequence for which 
Fk(n)~O. I 

Applying this lemma to the function q~(co)exp(p~/2T) we get 

f (Vpk r exp(p2k/2T) lt(&o)= 0 (4.16) 

thus the following lemma implies that the conditional density of/z given qk 
and (pj, qj) f o r j ~ k  is proportional to exp(-p~/2T). 

Lemma 8. If p is a a-finite measure on N and ~ cp'(x) p(dx) = 0 for 
each continuously differentiable (o of compact support, then p is a multiple 
of the Lebesque measure. | 

Proof. We have a nondecreasing function p=p(x) such that 
~o'(x) p(dx) = ~ qg'(x) dp(x) = -~ ~o"(x) p(x) dx = 0 whenever ~o has two 

continuous derivatives, which is possible only if p is a linear function; see, 
e.g., the Weyl lemma in [11]. | 

The conditional distribution of qk will be found by means of 

L a m m a  9. If p satisfies (1.14) and ~ G~o(o~)p(dog) for all ~p~C~b, 
then the conclusion of Lemma 7 implies that 

f(VqkHk((o)) r p(dog)= Tf  Wqk q)((.O ) #(dco) 

whenever (p e C~b does not depend on Pk. | 

ProoL In view of Lemma 7 we have ~ Gpq~(~o)~(&o)=0 if q~ e CoZb. 
Thus applying G to ~(Pk) q~(e~), where r ~ Co2b does not depend on Pk, we 
obtain that 

f (o'(pk)(VqkHk(09)) q)(~O) #(&O) = ~ f (o(pk)p/(o(r tZ(&O) j~S (4.17) 

which implies the statement by letting ~(pk)--~pk in such a way 
that ~ ' ~  I. Indeed, then ~ PkCO(Pk) q~(~O) #(&O)~ T~ ~ol~(&o) and 

pjCo(pk) q~(o)/~(&o)~ 0 because (4.16) implies that Pk is independent of 
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all of the other coordinates, and its probability density is just 
(2roT) -1/2 exp(-p~/2T). | 

Applying this result to q~(~)exp(Hk(oo)/T), where ~0 ~C~b does not 
depend on Pk, we obtain that 

(Vqk~0(co)) exp -~H~(co) #(&o)=0 (4.18) 

therefore Lemma 8 implies that the conditional density of qk given (pj, qj) 
for j r k is proportional to exp(-Hk(o~)/T), which completes the proof of 
Theorems 2 and 3. 

Remark 1 .  The crucial point of this version of the free energy 
method is the choice of the singular kernel gn, in particular, (3.2), (3.3) and 
the boundedness of the logarithmic derivatives are the most relevant 
properties. There is another possibility, namely, the transition density of 
the partial dynamics m(nl= co(n~(t) corresponding to S =  An can be used in 
place of g,. In this case the correspondence between the forward and 
backward Kolmogorov equations plays the role of integration by parts. 
This method seems to be more general than the present one, but it is not 
easy to get the necessary bounds, partly because the Kolmogorov 
equations are degenerated parabolic equations in this case. 

Remark 2. The second critical step is to find a suitable couple of 
Liapunov functions (Q, W) to derive the necessary moment conditions for 
arbitrary stationary measures. The present solution is based on the very 
particular structure of (1), and the presence of an at least quadratic exter- 
nal field is needed. 
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